If it's not what You are looking for type in the equation solver your own equation and let us solve it.
4.9x^2+24x-300=0
a = 4.9; b = 24; c = -300;
Δ = b2-4ac
Δ = 242-4·4.9·(-300)
Δ = 6456
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{6456}=\sqrt{4*1614}=\sqrt{4}*\sqrt{1614}=2\sqrt{1614}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(24)-2\sqrt{1614}}{2*4.9}=\frac{-24-2\sqrt{1614}}{9.8} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(24)+2\sqrt{1614}}{2*4.9}=\frac{-24+2\sqrt{1614}}{9.8} $
| 3y-6=56.73 | | 7x-20+3x=40 | | 5m-10m=20 | | 9(d+5)=99 | | 20-10p=-19p+5p-20 | | 9x+45=4x+40 | | 3x+9-x=10+x-5 | | 8w+3w=11 | | 140+60x=1090 | | 40-(8x+7)=9x+16 | | 8y-7y=-5 | | 5.50+4/3y=26.50 | | 9x+45=4x+24 | | (1/5)(24-5a)=4-a | | 180-5x=45-4x | | 2z+60+4z-50=180 | | 60x=950 | | x^2-4x+4=9x^2+6x+1 | | 3y-9y=-66 | | 5=5m-23+2/ | | 8−9f=10f+8 | | 3x+13=5x+9= | | 1x+5=-6+2x | | 0.5=2x/1 | | 6(2x+x)+36=90 | | 4y+88+10y-20=180 | | 10.5x+4500=18x | | -5=2a+3-2 | | -4(2x-3)=20+2x+28 | | 3x-50+2x=80 | | 3-2y+(-8y)+8.2=y | | 4x-50=1+x |